A transformative short course by AI Harsha that rewires how you think about AI prompting. Stop throwing words at modelsโstart engineering reliable, testable outputs.
Learners will UNLEARN bad prompting habits, then RELEARN robust, testable, and reusable techniques that produce reliable, evaluable outputs across tasks (analysis, coding, research, structured JSON, images/diagrams, and agent/tool use).
AI Harsha โ An AI evangelist focused on AI + Data Analytics, financial modeling best practices, and AI+IoT (ESP32/Arduino), with a signature "unlearn โ relearn" approach. Voice: clear, concise, technical yet approachable. No fluff.
Analysts, engineers, product managers, and power users with beginner-to-intermediate prompting experience who want to level up their AI interaction skills.
Hands-on workshop where you'll:
Metric | Weight | Score (1-5) |
---|---|---|
Clarity | 20% | Unambiguous goals |
Specificity | 20% | Detailed constraints |
Structure | 15% | Logical organization |
Grounding | 15% | Evidence-based |
Safety | 10% | Risk mitigation |
Reusability | 10% | Template-ready |
Testability | 10% | Measurable outputs |
"Unlearn" a forecasting prompt; produce a model brief + JSON outputs
"Unlearn" a firmware-help prompt; produce pin plan + risk checklist
"Unlearn" a dataset analysis prompt; produce SQL + narrative + chart spec
"Unlearn" a research agent brief; produce spec + guardrails + tests
# Role Definition You are a {role} with expertise in {domain}. # Task {specific_task_description} # Context & Constraints - Domain: {domain_specifics} - Scope: {scope_boundaries} - Token limit: {max_tokens} - Time constraint: {deadline} # Success Criteria 1. {measurable_criterion_1} 2. {measurable_criterion_2} 3. {measurable_criterion_3} # Output Format ```json { "analysis": "{structured_analysis}", "recommendations": [{recommendation_objects}], "confidence": {0-1_score}, "citations": [{source_references}] } ``` # Examples Input: {example_input} Output: {example_output} # Evaluation Checklist - [ ] Meets all success criteria - [ ] Follows output schema exactly - [ ] Includes evidence/citations - [ ] No hallucinations detected
# Role You are a Senior Financial Analyst specializing in {industry} financial modeling. # Objective Create a {model_type} financial model for {company/project}. # Assumptions to Validate - Revenue growth: {growth_assumptions} - Cost structure: {cost_assumptions} - Market conditions: {market_assumptions} - Risk factors: {risk_list} # Required Scenarios 1. Base case: {base_parameters} 2. Best case: {best_parameters} 3. Worst case: {worst_parameters} # Deliverables ```json { "model_structure": { "revenue_streams": [], "cost_categories": [], "capex_schedule": [] }, "scenarios": { "base": {financial_metrics}, "best": {financial_metrics}, "worst": {financial_metrics} }, "key_metrics": { "NPV": number, "IRR": percentage, "payback_period": months, "break_even": date }, "sensitivity_analysis": { "critical_variables": [], "impact_ranges": {} } } ``` # Validation Tests - Sum of parts = Total - Balance sheet balances - Cash flow reconciles - Returns are realistic for industry
# Role You are an embedded systems engineer specializing in ESP32/Arduino development. # Hardware Configuration - Board: {board_model} - Peripherals: {connected_devices} - Power: {power_specs} - Communication: {protocols_used} # Task {specific_implementation_need} # Safety Constraints - Max current per pin: 12mA - Total current limit: 200mA - Operating voltage: 3.3V - Protected pins: {reserved_pins} # Pin Mapping Required ```json { "gpio_assignments": { "pin_number": "function", "constraints": "notes" }, "i2c": {"sda": pin, "scl": pin}, "spi": {"mosi": pin, "miso": pin, "sck": pin, "cs": pin}, "uart": {"tx": pin, "rx": pin} } ``` # Code Template ```cpp #include// Pin definitions const int {PIN_NAME} = {PIN_NUMBER}; // Safety checks void validatePinConfiguration() { // Current draw validation // Voltage level checks // Conflict detection } void setup() { validatePinConfiguration(); // Initialization code } void loop() { // Main logic with safety guards } ``` # Testing Checklist - [ ] Pin conflicts resolved - [ ] Current within limits - [ ] Voltage levels compatible - [ ] Error handling implemented
# Dual Role Primary: SQL Query Author Secondary: Query Performance Reviewer # Database Context - DBMS: {database_type} - Schema: {relevant_tables_and_columns} - Indexes: {available_indexes} - Data volume: {approximate_rows} # Query Requirements {detailed_data_need} # Performance Constraints - Max execution time: {seconds} - Result set limit: {max_rows} - Resource usage: {cpu_memory_limits} # Output Format ```json { "query": "SELECT ...", "explanation": "Step-by-step logic", "performance_analysis": { "estimated_cost": number, "index_usage": [], "potential_bottlenecks": [] }, "test_cases": [ { "description": "Test scenario", "expected_rows": number, "validation_query": "SELECT COUNT(*) ..." } ], "optimization_suggestions": [] } ``` # Query Quality Checks - [ ] Uses appropriate indexes - [ ] Avoids N+1 queries - [ ] Handles NULL values - [ ] Includes error handling - [ ] Has EXPLAIN plan review
# Role You are a Senior Data Analyst specializing in {domain} analytics. # Input Data - File: {csv_file_path} - Rows: {estimated_rows} - Columns: {column_list} - Date range: {start_date} to {end_date} # Analysis Requirements 1. Data quality assessment 2. Statistical summary 3. Trend identification 4. Anomaly detection 5. Actionable insights # Output Format ```json { "data_quality": { "completeness": percentage, "null_counts": {}, "outliers": [] }, "key_metrics": { "metric_name": { "value": number, "trend": "up|down|stable", "significance": "high|medium|low" } }, "insights": [ { "finding": "description", "impact": "business impact", "recommendation": "action item", "confidence": 0.0-1.0 } ], "visualizations_needed": [ { "type": "chart_type", "data": "columns_to_plot", "purpose": "why_needed" } ] } ``` # Validation - Statistical tests performed - Assumptions checked - Edge cases handled
# Role You are a Senior Software Engineer debugging {language} code. # Bug Context - Error message: {error_text} - Environment: {os, version, dependencies} - When occurs: {reproduction_steps} - Expected behavior: {what_should_happen} - Actual behavior: {what_happens} # Code Context ```{language} {problematic_code} ``` # Debug Process 1. Reproduce issue 2. Form hypothesis 3. Isolate problem 4. Propose fix 5. Write tests # Output Format ```json { "diagnosis": { "root_cause": "explanation", "affected_components": [], "severity": "critical|high|medium|low" }, "solution": { "fix_code": "corrected code", "explanation": "why this fixes it", "side_effects": [] }, "tests": [ { "test_name": "description", "test_code": "unit test", "expected_result": "outcome" } ], "prevention": { "recommendations": [], "monitoring": [] } } ``` # Verification - Fix tested in isolation - Regression tests pass - Performance impact assessed
# Role You are a Business Intelligence Analyst creating executive dashboard narratives. # Dashboard Context - Platform: {Looker|Tableau|PowerBI|Klipfolio} - Audience: {executives|managers|analysts} - Metrics shown: {metric_list} - Time period: {date_range} # Data Points ```json { "current_period": { "metric_1": value, "metric_2": value }, "prior_period": { "metric_1": value, "metric_2": value }, "targets": { "metric_1": value, "metric_2": value } } ``` # Commentary Requirements 1. Executive summary (2-3 sentences) 2. Key wins and concerns 3. Trend analysis 4. Forward-looking insights 5. Recommended actions # Output Format ```json { "executive_summary": "High-level takeaway", "performance_highlights": [ { "metric": "name", "change": "ยฑX%", "narrative": "contextual explanation", "sentiment": "positive|neutral|negative" } ], "trends": [ { "pattern": "description", "duration": "timeframe", "implication": "business impact" } ], "alerts": [ { "issue": "what needs attention", "urgency": "high|medium|low", "action": "recommended response" } ], "forecast": { "next_period_outlook": "prediction", "confidence": 0.0-1.0, "assumptions": [] } } ```
# Role You are a Research Analyst with access to a document corpus via RAG. # Research Question {specific_research_question} # Corpus Context - Documents: {document_count} - Types: {pdf|web|internal_docs} - Date range: {corpus_date_range} - Retrieval method: {embedding_model} # Search Parameters - Top-k results: {number} - Similarity threshold: {0.0-1.0} - Reranking: {true|false} # Output Requirements ```json { "research_summary": { "key_findings": [], "confidence_level": 0.0-1.0, "gaps_identified": [] }, "evidence": [ { "claim": "specific assertion", "sources": [ { "document": "title/id", "page": number, "quote": "exact text", "relevance_score": 0.0-1.0 } ], "strength": "strong|moderate|weak" } ], "synthesis": { "consensus_points": [], "conflicting_views": [], "emerging_themes": [] }, "recommendations": { "conclusions": [], "further_research": [], "action_items": [] }, "metadata": { "documents_reviewed": number, "retrieval_time_ms": number, "coverage_assessment": "comprehensive|adequate|limited" } } ``` # Quality Checks - [ ] All claims cited - [ ] No hallucinations - [ ] Sources verified - [ ] Conflicting evidence noted
# Role You are a Visual Communication Designer creating technical diagrams. # Visual Requirements - Type: {flowchart|architecture|infographic|schematic} - Purpose: {explain|document|present} - Audience: {technical|business|general} - Style: {minimal|detailed|branded} # Content to Visualize {description_of_concepts_and_relationships} # Constraints - Colors: {palette_or_restrictions} - Size: {dimensions_or_aspect_ratio} - Format: {SVG|PNG|mermaid|plantuml} - Accessibility: {alt_text_required} # Output Format ```json { "diagram_spec": { "type": "diagram_type", "elements": [ { "id": "unique_id", "type": "box|circle|arrow", "label": "text", "position": {"x": 0, "y": 0}, "style": {} } ], "connections": [ { "from": "element_id", "to": "element_id", "label": "relationship", "style": "solid|dashed" } ], "layout": "hierarchical|circular|force" }, "code": "mermaid or other diagram code", "alt_text": "accessibility description", "annotations": [ { "element": "id", "note": "explanation" } ] } ``` # Quality Criteria - [ ] Visually balanced - [ ] Logically organized - [ ] Labels clear - [ ] Color meaningful - [ ] Accessible
# Role You are an Executive Communications Specialist creating C-suite briefings. # Document Context - Source: {report|analysis|proposal} - Length: {page_count} - Technical level: {high|medium|low} - Urgency: {immediate|standard|FYI} # Executive Audience - Reader: {CEO|CFO|CTO|Board} - Time available: {30_seconds|2_minutes} - Decision needed: {yes|no} - Prior context: {what_they_know} # Summary Requirements ONE PAGE MAXIMUM containing: 1. Bottom line upfront (BLUF) 2. Key points (3-5 bullets) 3. Financial/operational impact 4. Recommended action 5. Risk assessment # Output Format ```json { "headline": "8-10 word maximum impact statement", "bluf": "One sentence bottom line", "key_points": [ { "point": "concise statement", "impact": "quantified where possible", "confidence": "high|medium|low" } ], "financial_impact": { "cost": "amount or range", "benefit": "amount or range", "roi": "percentage or timeframe", "assumptions": [] }, "recommendation": { "action": "specific next step", "timeline": "when", "owner": "who", "alternatives": [] }, "risks": [ { "risk": "what could go wrong", "probability": "high|medium|low", "mitigation": "how to prevent" } ], "appendix_available": true } ```
# Role You are a Robotics Control Engineer specializing in RC systems. # System Specifications - Platform: {drone|rover|boat|plane} - Controller: {Arduino|ESP32|Pixhawk} - Protocol: {PWM|PPM|SBUS|MAVLink} - Channels: {number_of_channels} # Control Requirements - Input: {transmitter_type} - Output: {servo|ESC|motor_driver} - Frequency: {50Hz|400Hz|custom} - Resolution: {bits} # Safety Requirements - Failsafe: {RTH|land|stop} - Limits: {min_max_values} - Deadband: {center_tolerance} - Expo: {curve_parameters} # Implementation ```cpp // Signal timing constraints const int PWM_MIN = {1000}; // ฮผs const int PWM_MID = {1500}; // ฮผs const int PWM_MAX = {2000}; // ฮผs const int FRAME_RATE = {50}; // Hz // Channel mapping enum Channels { THROTTLE = 0, ROLL = 1, PITCH = 2, YAW = 3, AUX1 = 4, AUX2 = 5 }; // Decode function int decodePWM(int pulse_width) { // Constrain input pulse_width = constrain(pulse_width, PWM_MIN, PWM_MAX); // Apply deadband if (abs(pulse_width - PWM_MID) < DEADBAND) { return 0; } // Map to control range return map(pulse_width, PWM_MIN, PWM_MAX, -100, 100); } // Failsafe handler void checkFailsafe() { if (millis() - lastSignal > FAILSAFE_TIMEOUT) { enterFailsafeMode(); } } ``` # Output JSON ```json { "control_mappings": {}, "timing_parameters": {}, "safety_checks": [], "test_sequences": [] } ```
# Role You are a Senior Software Architect focused on clean code and design patterns. # Refactoring Context - Language: {programming_language} - Framework: {if_applicable} - Current issues: {code_smells_identified} - Target: {performance|readability|maintainability} # Code to Refactor ```{language} {existing_code} ``` # Refactoring Goals 1. Apply SOLID principles 2. Reduce complexity 3. Improve testability 4. Enhance performance 5. Increase readability # Output Format ```json { "analysis": { "code_smells": [ { "type": "smell_name", "location": "line_or_function", "severity": "high|medium|low" } ], "complexity_metrics": { "cyclomatic": number, "cognitive": number, "loc": number } }, "refactored_code": "improved version", "patterns_applied": [ { "pattern": "name", "reason": "why applied", "benefit": "what it improves" } ], "tests": { "unit_tests": [], "integration_tests": [] }, "migration_steps": [ "Step-by-step refactoring process" ], "breaking_changes": [] } ``` # Quality Metrics - [ ] Cyclomatic complexity < 10 - [ ] Test coverage > 80% - [ ] No duplicated code - [ ] Clear naming - [ ] Single responsibility
# Role You are a QA Engineer creating comprehensive test suites. # System Under Test - Component: {module_or_feature} - Type: {unit|integration|e2e} - Language: {implementation_language} - Framework: {testing_framework} # Requirements to Test ``` {functional_requirements} {non_functional_requirements} ``` # Test Strategy - Coverage target: {percentage} - Test types: {smoke|regression|performance} - Data approach: {mock|stub|real} - Environment: {local|staging|production} # Output Format ```json { "test_suite": { "name": "suite_name", "setup": "initialization_code", "teardown": "cleanup_code" }, "test_cases": [ { "id": "TC001", "name": "descriptive_name", "category": "functional|edge|negative", "priority": "P0|P1|P2", "preconditions": [], "input": {}, "expected_output": {}, "test_code": "actual test implementation", "assertions": [] } ], "test_data": { "valid_inputs": [], "edge_cases": [], "invalid_inputs": [] }, "coverage_matrix": { "requirements": [], "test_mapping": {} }, "performance_benchmarks": { "response_time": "ms", "throughput": "requests/sec" } } ``` # Edge Cases to Include - Boundary values - Null/empty inputs - Concurrent access - Resource exhaustion - Network failures
# Role You are an API Documentation Specialist creating developer-friendly docs. # API Context - Name: {api_name} - Version: {version} - Protocol: {REST|GraphQL|gRPC} - Auth: {OAuth2|API_Key|JWT} # Endpoints to Document ```yaml endpoints: - path: /endpoint method: GET|POST|PUT|DELETE description: what it does parameters: [] response: {} ``` # Documentation Requirements 1. Clear descriptions 2. Request/response examples 3. Error codes 4. Rate limits 5. SDKs/code samples # Output Format ```json { "api_overview": { "description": "what the API does", "base_url": "https://api.example.com/v1", "authentication": { "type": "method", "details": "how to authenticate" }, "rate_limits": { "requests_per_minute": number, "burst_limit": number } }, "endpoints": [ { "path": "/resource", "method": "HTTP_METHOD", "summary": "one-line description", "description": "detailed explanation", "parameters": [ { "name": "param_name", "in": "query|path|header|body", "required": boolean, "type": "string|number|boolean", "description": "what it's for", "example": "value" } ], "request_body": { "content_type": "application/json", "schema": {}, "example": {} }, "responses": { "200": { "description": "Success", "schema": {}, "example": {} }, "400": { "description": "Bad Request", "example": {} } }, "code_samples": { "curl": "example", "python": "example", "javascript": "example" } } ], "errors": { "error_codes": [], "common_issues": [] } } ```
# Role You are a Security Engineer performing application security assessment. # Application Context - Type: {web|mobile|API|desktop} - Stack: {technologies_used} - Environment: {cloud|on-prem|hybrid} - Compliance: {PCI|HIPAA|GDPR|SOC2} # Audit Scope - Code review: {yes|no} - Penetration testing: {yes|no} - Configuration review: {yes|no} - Dependency scanning: {yes|no} # Security Checklist ```json { "authentication": { "multi_factor": boolean, "password_policy": {}, "session_management": {}, "findings": [] }, "authorization": { "rbac_implemented": boolean, "privilege_escalation_tested": boolean, "findings": [] }, "data_protection": { "encryption_at_rest": boolean, "encryption_in_transit": boolean, "pii_handling": {}, "findings": [] }, "input_validation": { "sql_injection": "tested|vulnerable|secure", "xss": "tested|vulnerable|secure", "xxe": "tested|vulnerable|secure", "findings": [] }, "dependencies": { "vulnerable_packages": [], "outdated_count": number, "critical_updates": [] }, "infrastructure": { "firewall_rules": {}, "exposed_services": [], "ssl_configuration": {}, "findings": [] }, "recommendations": { "critical": [], "high": [], "medium": [], "low": [] }, "compliance_gaps": [], "remediation_plan": { "immediate_actions": [], "short_term": [], "long_term": [] } } ``` # Risk Assessment - Overall risk: Critical|High|Medium|Low - Exploitability: score - Business impact: score
# Role You are a Digital Twin Architect designing virtual representations of physical systems. # Physical System - Type: {manufacturing|building|vehicle|infrastructure} - Components: {list_of_major_components} - Sensors: {sensor_types_and_count} - Update frequency: {real-time|near-real-time|batch} # Twin Requirements - Fidelity level: {high|medium|low} - Use cases: {monitoring|prediction|optimization} - Integration: {IoT_platform|ERP|SCADA} - Visualization: {3D|dashboard|AR_VR} # Data Model ```json { "entity_model": { "physical_asset": { "id": "unique_identifier", "type": "asset_type", "location": {}, "specifications": {} }, "sensors": [ { "id": "sensor_id", "type": "temperature|pressure|vibration", "unit": "measurement_unit", "sampling_rate": "Hz", "accuracy": "ยฑvalue" } ], "relationships": [ { "parent": "entity_id", "child": "entity_id", "type": "contains|connects|depends" } ] }, "telemetry_schema": { "timestamp": "ISO8601", "sensor_id": "string", "value": "number", "quality": "good|bad|uncertain" }, "state_model": { "operational_states": [], "transitions": [], "current_state": {} }, "simulation_parameters": { "physics_engine": "settings", "time_step": "seconds", "convergence_criteria": {} }, "ml_models": [ { "type": "predictive|anomaly|optimization", "inputs": [], "outputs": [], "update_frequency": "schedule" } ], "alerts": { "thresholds": {}, "predictive_maintenance": {}, "anomaly_detection": {} } } ``` # Validation - Accuracy vs physical: {percentage} - Latency requirement: {ms} - Scalability: {number_of_twins}
# Role You are a Compliance Officer preparing regulatory compliance documentation. # Compliance Context - Regulation: {GDPR|CCPA|HIPAA|SOX|PCI-DSS} - Organization: {company_type} - Audit period: {date_range} - Auditor: {internal|external} # Scope - Data types: {PII|PHI|financial} - Systems: {systems_in_scope} - Processes: {business_processes} - Locations: {geographical_scope} # Requirements Checklist {specific_regulatory_requirements} # Output Format ```json { "executive_summary": { "compliance_status": "compliant|partial|non-compliant", "score": "percentage", "critical_findings": number, "report_date": "date" }, "compliance_areas": [ { "area": "category_name", "requirements": [ { "id": "REQ-001", "description": "requirement_text", "status": "met|partial|not_met", "evidence": [], "gaps": [], "remediation": {} } ], "overall_status": "percentage_complete" } ], "findings": { "critical": [ { "finding": "description", "impact": "business_impact", "regulation_violated": "specific_clause", "remediation_required": "action", "deadline": "date" } ], "major": [], "minor": [] }, "evidence_collected": { "documents_reviewed": [], "interviews_conducted": [], "systems_tested": [], "samples_examined": [] }, "remediation_plan": { "immediate": [], "30_days": [], "90_days": [], "long_term": [] }, "attestation": { "prepared_by": "name", "reviewed_by": "name", "approved_by": "name", "date": "date" } } ``` # Risk Matrix - Compliance risk: High|Medium|Low - Financial exposure: amount - Reputation impact: assessment
# Role You are a Business Intelligence Architect designing KPI dashboards. # Dashboard Context - Purpose: {executive|operational|analytical} - Users: {user_roles} - Refresh rate: {real-time|hourly|daily} - Platform: {PowerBI|Tableau|Looker|custom} # Business Context - Department: {sales|marketing|operations|finance} - Goals: {business_objectives} - Critical metrics: {must_have_kpis} - Benchmarks: {industry_or_internal} # KPI Definitions ```json { "dashboard_layout": { "header": { "title": "dashboard_name", "filters": ["date_range", "region", "product"], "refresh_indicator": true }, "kpi_cards": [ { "metric": "Revenue", "current_value": "formula", "comparison": { "type": "period_over_period", "baseline": "previous_period", "change": "percentage" }, "sparkline": true, "drill_down": "detailed_view", "thresholds": { "good": ">100000", "warning": "80000-100000", "critical": "<80000" } } ], "visualizations": [ { "type": "line|bar|pie|heatmap", "title": "chart_title", "metrics": [], "dimensions": [], "filters": [], "interactions": "click|hover|zoom" } ], "tables": [ { "title": "Detail Table", "columns": [], "sorting": "default_column", "pagination": true, "export": true } ] }, "data_sources": { "primary": { "type": "database|api|file", "connection": {}, "refresh_schedule": "cron" }, "calculations": [ { "name": "calculated_field", "formula": "expression", "description": "what_it_measures" } ] }, "alerts": [ { "condition": "threshold_expression", "recipients": [], "frequency": "check_interval", "message_template": "alert_text" } ], "performance": { "load_time_target": "seconds", "caching_strategy": "approach", "optimization_notes": [] } } ``` # Success Metrics - User adoption: target - Decision impact: measurement - Time to insight: goal
# Role You are a DevOps Engineer implementing infrastructure as code. # Infrastructure Requirements - Cloud provider: {AWS|Azure|GCP} - Environment: {dev|staging|prod} - Region: {cloud_region} - Compliance: {requirements} # Architecture - Compute: {EC2|Lambda|Containers} - Storage: {S3|EBS|Database} - Network: {VPC|Subnets|Security_Groups} - Services: {additional_services} # IaC Tool - Tool: {Terraform|CloudFormation|Pulumi} - Version: {version_number} - State management: {local|remote} # Template Structure ```json { "infrastructure": { "network": { "vpc": { "cidr": "10.0.0.0/16", "enable_dns": true, "tags": {} }, "subnets": { "public": ["10.0.1.0/24", "10.0.2.0/24"], "private": ["10.0.10.0/24", "10.0.11.0/24"] }, "security_groups": [ { "name": "web_sg", "ingress_rules": [], "egress_rules": [] } ] }, "compute": { "instances": [ { "name": "web_server", "type": "t3.medium", "ami": "ami-id", "count": 2, "user_data": "script" } ], "auto_scaling": { "min": 2, "max": 10, "target_cpu": 70 } }, "storage": { "s3_buckets": [], "databases": { "rds": { "engine": "postgres", "version": "13.7", "instance_class": "db.t3.medium", "allocated_storage": 100, "backup_retention": 7 } } }, "monitoring": { "cloudwatch_alarms": [], "log_groups": [], "metrics": [] } }, "deployment": { "pipeline": "stages", "rollback_plan": "procedure", "validation_tests": [] }, "cost_estimation": { "monthly_cost": "USD", "cost_optimization": [] }, "security": { "encryption": "at_rest_and_transit", "iam_roles": [], "secrets_management": "method" } } ``` # Validation - [ ] Security scan passed - [ ] Cost within budget - [ ] Compliance checked - [ ] DR plan tested
# Role You are a Project Manager creating stakeholder communication strategies. # Project Context - Name: {project_name} - Phase: {initiation|planning|execution|closing} - Duration: {timeline} - Budget: {amount} - Impact: {business_impact} # Stakeholder Analysis ```json { "stakeholder_matrix": [ { "name": "stakeholder_name", "role": "title", "influence": "high|medium|low", "interest": "high|medium|low", "category": "sponsor|customer|team|vendor", "concerns": [], "expectations": [] } ] } ``` # Communication Requirements - Frequency: {daily|weekly|monthly} - Channels: {email|slack|meetings|reports} - Escalation: {process} - Documentation: {storage_location} # Output Format ```json { "communication_plan": { "objectives": [ "Clear project goals", "Stakeholder alignment", "Risk transparency" ], "schedule": [ { "audience": "executives", "message_type": "status_update", "frequency": "weekly", "format": "dashboard", "owner": "PM", "template": "exec_template" }, { "audience": "team", "message_type": "daily_standup", "frequency": "daily", "format": "meeting", "owner": "scrum_master", "duration": "15_min" } ], "templates": { "status_report": { "sections": ["summary", "progress", "risks", "next_steps"], "tone": "professional", "length": "1_page" }, "escalation": { "trigger": "conditions", "process": "steps", "sla": "response_time" } }, "feedback_loops": { "collection_method": "surveys|meetings", "frequency": "sprint_end", "action_items": "tracking_method" }, "crisis_communication": { "scenarios": [], "response_team": [], "templates": [] }, "success_metrics": { "stakeholder_satisfaction": "measurement", "message_effectiveness": "tracking", "engagement_rate": "calculation" } } } ``` # Key Messages - Project value proposition - Success criteria - Risk mitigation - Timeline milestones
# Role You are a Quantitative Analyst setting up Monte Carlo simulations. # Simulation Context - Purpose: {risk_analysis|pricing|forecast} - Domain: {finance|project|operations} - Time horizon: {period} - Confidence level: {95%|99%} # Model Parameters ```json { "variables": [ { "name": "revenue", "distribution": "normal|lognormal|uniform|triangular", "parameters": { "mean": number, "std_dev": number, "min": number, "max": number }, "correlation": { "with": "other_variable", "coefficient": -1_to_1 } } ], "constants": { "fixed_costs": number, "tax_rate": percentage } } ``` # Simulation Configuration - Iterations: {10000|100000} - Seed: {random_seed} - Convergence criteria: {metric} - Parallel processing: {yes|no} # Output Requirements ```json { "simulation_setup": { "model": "mathematical_formula", "assumptions": [], "limitations": [] }, "results": { "statistics": { "mean": number, "median": number, "std_deviation": number, "skewness": number, "kurtosis": number }, "percentiles": { "p5": number, "p25": number, "p50": number, "p75": number, "p95": number }, "probability_distributions": { "histogram_bins": 50, "density_estimation": "kernel" }, "scenarios": { "best_case": "p95_value", "base_case": "mean_value", "worst_case": "p5_value" } }, "sensitivity_analysis": { "tornado_diagram": { "variables": [], "impact_ranges": [] }, "correlation_matrix": [] }, "validation": { "convergence_test": "result", "stability_check": "passed|failed", "historical_backtest": "accuracy" }, "recommendations": { "key_insights": [], "risk_factors": [], "confidence_intervals": [], "decision_support": [] } } ``` # Code Template ```python import numpy as np from scipy import stats def monte_carlo_simulation(n_iterations={iterations}): results = [] for i in range(n_iterations): # Generate random variables revenue = np.random.normal({mean}, {std}) costs = np.random.triangular({min}, {mode}, {max}) # Apply model outcome = revenue - costs results.append(outcome) return np.array(results) # Run simulation outcomes = monte_carlo_simulation() # Calculate statistics print(f"Mean: {np.mean(outcomes):.2f}") print(f"VaR 95%: {np.percentile(outcomes, 5):.2f}") print(f"CVaR 95%: {np.mean(outcomes[outcomes <= np.percentile(outcomes, 5)]):.2f}") ```
โ Before: "Analyze this company's financials and tell me if it's a good investment."
โ After:
Role: You are a CFA analyzing {Company X}'s 10-K filing for investment decision. Task: Evaluate investment potential using fundamental analysis. Data Context: - Fiscal years: 2021-2023 - Industry: SaaS B2B - Market cap: $2.5B Required Analysis: 1. Revenue growth rate (3-year CAGR) 2. Gross margin trends 3. Rule of 40 score 4. LTV/CAC ratio 5. Cash burn rate Output Format: ```json { "metrics": { "revenue_cagr": percentage, "gross_margin": percentage, "rule_of_40": number, "ltv_cac": ratio }, "investment_recommendation": "buy|hold|sell", "confidence": 0.0-1.0, "key_risks": [list], "catalysts": [list] } ```
โ Before: "Build a DCF model for this company."
โ After:
Role: Financial Analyst building a 5-year DCF for {Company} valuation. Assumptions: - Revenue growth: Y1: 25%, Y2: 20%, Y3-5: 15% - EBITDA margin: Current 15%, expanding 2% annually to 25% - CapEx: 5% of revenue - Working capital: 10% of revenue change - Tax rate: 21% - Terminal growth: 3% - WACC: 12% Output: ```json { "dcf_model": { "revenue_projections": [year1-5], "fcf_projections": [year1-5], "terminal_value": amount, "enterprise_value": amount, "equity_value": amount, "price_per_share": amount }, "sensitivity": { "wacc_range": [10%, 12%, 14%], "terminal_growth": [2%, 3%, 4%], "valuation_matrix": [] } } ```
โ Before: "Optimize my portfolio."
โ After:
Role: Portfolio Manager optimizing asset allocation using Markowitz framework. Current Portfolio: - Stocks: 60% (US: 40%, International: 20%) - Bonds: 30% - Alternatives: 10% Constraints: - Risk tolerance: Moderate (Sharpe > 0.8) - Time horizon: 10 years - Max single position: 5% - ESG requirement: Exclude fossil fuels - Rebalancing: Quarterly Historical Data: 5 years monthly returns provided Output: Efficient frontier with optimal weights minimizing variance for 8% target return. Include correlation matrix, risk metrics, and backtest results.
โ Before: "What's the risk of this trade?"
โ After:
Role: Risk Manager evaluating FX options position. Position Details: - Instrument: EUR/USD Call Option - Strike: 1.15 - Expiry: 90 days - Notional: $10M - Current spot: 1.12 - Volatility: 12% implied Calculate: 1. Greeks (Delta, Gamma, Vega, Theta, Rho) 2. VaR (95% confidence, 1-day) 3. Stress scenarios (ยฑ10% spot, ยฑ5% vol) 4. Maximum loss potential 5. Margin requirements Output as JSON with all metrics, scenarios, and hedge recommendations.
โ Before: "Review these financial statements."
โ After:
Role: Forensic Accountant analyzing for red flags. Documents: Q3 2024 10-Q filing Focus Areas: - Revenue recognition changes - Accounts receivable aging - Off-balance sheet items - Related party transactions - Audit opinion changes Quality Checks: - Benford's Law on reported numbers - Accruals ratio trends - Days sales outstanding - Altman Z-score Flag any anomalies with severity (High/Medium/Low) and specific SEC regulation references.
โ Before: "Value this acquisition target."
โ After:
Role: Investment Banker preparing CIM valuation section. Target: {Company B} Industry: FinTech Revenue: $50M (2023) EBITDA: $8M Growth: 40% YoY Valuation Methods Required: 1. Comparable companies (provide 5 comps) 2. Precedent transactions (last 2 years) 3. DCF (base, bull, bear cases) 4. LBO analysis (25% IRR target) Synergies: - Cost: $3M annually (IT consolidation) - Revenue: $5M by year 3 (cross-sell) Output: Football field chart ranges + detailed assumptions
โ Before: "Explain budget variances."
โ After:
Role: FP&A Manager explaining Q3 variances to CFO. Variances to Analyze: - Revenue: -$2.3M (-8%) vs budget - COGS: +$1.1M (+12%) vs budget - OpEx: -$0.5M (-3%) vs budget - EBITDA: -$2.9M (-35%) vs budget For each variance provide: 1. Root cause (volume/price/mix analysis) 2. Controllable vs uncontrollable factors 3. Trending (improving/worsening) 4. Corrective actions 5. Updated Q4 forecast impact Format: Executive one-pager with waterfall chart data
โ Before: "Price this option."
โ After:
Role: Quant Analyst pricing exotic option. Option Specifications: - Type: Asian Call (arithmetic average) - Underlying: AAPL - Strike: $180 - Expiry: 6 months - Averaging: Daily over last month - Current price: $175 - Volatility: 25% - Risk-free rate: 4.5% - Dividend yield: 0.5% Required: 1. Black-Scholes baseline 2. Monte Carlo price (10,000 paths) 3. Greeks via finite difference 4. Implied volatility surface 5. P&L scenarios Include confidence intervals and model limitations.
"Get me sales data and make a dashboard."
Role: Data Analyst creating executive sales dashboard in Looker Studio. Data Sources: - sales_transactions (2023-2024) - customer_segments - product_catalog Dashboard Requirements: 1. Time period: Rolling 12 months 2. Granularity: Daily/Weekly/Monthly toggle 3. Segments: Region, Product Category, Customer Tier Key Metrics: ```json { "primary_kpis": [ {"metric": "Total Revenue", "format": "currency"}, {"metric": "Units Sold", "format": "number"}, {"metric": "AOV", "format": "currency"}, {"metric": "Conversion Rate", "format": "percentage"} ], "trend_charts": [ "Revenue over time", "Category mix evolution" ], "filters": ["date_range", "region", "category"] } ``` SQL for Revenue Metric: ```sql WITH daily_sales AS ( SELECT DATE(transaction_date) as date, SUM(amount) as revenue, COUNT(DISTINCT customer_id) as customers FROM sales_transactions WHERE transaction_date >= DATE_SUB(CURRENT_DATE(), INTERVAL 365 DAY) GROUP BY 1 ) SELECT * FROM daily_sales ORDER BY date DESC; ```
"Help me connect a motor to my ESP32."
Role: Embedded systems engineer ensuring safe motor control with ESP32. Hardware Specs: - ESP32: DevKitC v4 - Motor: 12V DC, 2A stall current - Driver: L298N H-bridge - Power: Separate 12V 3A supply Safety Requirements: - ESP32 pins: 3.3V logic only - Motor isolation required (no direct connection) - Current limiting needed - Emergency stop function Pin Assignment: ```json { "motor_control": { "enable": "GPIO 25 (PWM)", "dir1": "GPIO 26", "dir2": "GPIO 27", "emergency_stop": "GPIO 34 (input only)" }, "safety_features": { "optocoupler": "recommended", "flyback_diodes": "required", "current_sense": "GPIO 35 (ADC)" } } ``` Implementation: ```cpp const int MOTOR_EN = 25; const int MOTOR_DIR1 = 26; const int MOTOR_DIR2 = 27; const int E_STOP = 34; const int CURRENT_SENSE = 35; const float MAX_CURRENT = 1.8; // Safety margin void setup() { pinMode(E_STOP, INPUT_PULLUP); if(digitalRead(E_STOP) == LOW) { // Don't start if e-stop engaged while(1) { delay(1000); } } ledcSetup(0, 5000, 8); // 5kHz PWM ledcAttachPin(MOTOR_EN, 0); } void motorSafeRun(int speed) { if(readCurrent() > MAX_CURRENT) { motorStop(); Serial.println("OVERCURRENT PROTECTION"); } } ```
"Write something about AI trends."
Role: Technology analyst writing for Fortune 500 executives. Content Type: Executive briefing (one-pager) Topic: AI adoption trends affecting enterprise operations in 2024 Target Audience: - C-suite executives - Non-technical background - Decision-making focus Structure: ```json { "sections": [ {"title": "Executive Summary", "words": 100}, {"title": "Top 3 Trends", "words": 300}, {"title": "Industry Impact", "words": 200}, {"title": "Action Items", "words": 100} ], "tone": "authoritative yet accessible", "evidence": "cite 3+ recent studies", "visuals": "suggest 2 charts/graphs" } ``` Key Messages: 1. GenAI adoption rate: 73% of enterprises (cite: McKinsey 2024) 2. ROI timeline: 6-12 months for customer service use cases 3. Primary barrier: Data governance, not technology Success Metrics: - Reading time: <3 minutes - Actionable insights: 3+ - Evidence-based claims: 100%